
Web Document Encoding for Structure-Aware Keyphrase
Extraction

Jihyuk Kim
Yonsei University

Seoul, Republic of Korea
jihyukkim@yonsei.ac.kr

Young-In Song
Naver Corp

Gyeonggi-do, Republic of Korea
song.youngin@navercorp.com

Seung-won Hwang
Seoul National University
Seoul, Republic of Korea
seungwonh@snu.ac.kr

ABSTRACT
We study keyphrase extraction (KPE) from Web documents. Our
key contribution is encodingWeb documents to leverage structure,
such as title or anchors, by building a graph of words representing
both (a) position-based proximity and (b) structural relations. We
evaluate KPE performance on real-world search engine NAVER and
human-annotated KPE benchmarks, and ours outperforms state-of-
the-arts in both tasks.

CCS CONCEPTS
• Information systems→ Information extraction.

KEYWORDS
keyphrase extraction, search query extraction, structured Web doc-
ument, graph convolutional network

ACM Reference Format:
Jihyuk Kim, Young-In Song, and Seung-won Hwang. 2021. Web Document
Encoding for Structure-Aware Keyphrase Extraction. In Proceedings of the
44th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’21), July 11–15, 2021, Virtual Event, Canada.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3404835.3463067

1 INTRODUCTION
In Web search, keyphrase extraction (KPE) from documents can
contribute to enhancing (a) document ranking and (b) human read-
ability. To illustrate, early models [12] extract key n-grams in the
document as likely queries, to improve ranking for such queries.
Alternatively, keyphrases can be highlighted for human readability.

For the first task, KPE is supervised by click queries and aims
to improve ranking. This task can be intrinsically evaluated by
the quality of predicted queries, and extrinsically by the quality of
ranking, after the Web document is augmented with keyphrases.
We evaluate this task on real-life search engine NAVER in Korean.

For the second task, KPE is supervised by human-annotated
keyphrases from OpenKP [32], on randomly sampled English docu-
ments from the Web. This dataset enables a visual representation of
a document by including information such as location, font size, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’21, July 11–15, 2021, Virtual Event, Canada
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8037-9/21/07. . . $15.00
https://doi.org/10.1145/3404835.3463067

airline baggage

policy
acceptable

luggage

Document topic: airlines’ baggage policies

flight

(a) DivGraphPointer
encodes plain text

(b) Ours encodes structured text

baggage

policy
policyflight

acceptable

airline baggage

acceptable

baggage

(body)

(header)

(anchor)

(title)

Figure 1: An illustrative example document describing air-
lines’ baggage policies. The thickness of black edges indi-
cates a higher degree of position-based term proximity. The
field structure enriches the representation, through inter-
field connection, shown in red edges.

HTML structure, but does not include search queries and relevance
assessments, and as such, this task is only intrinsically evaluated.

Our proposed model is built upon the recently proposed KPE
model, DivGraphPointer [28], treating document as plain text and
building a word graph, where edges between words (nodes) are
represented using position-based proximity. DivGraphPointer is
a state-of-the-art KPE for plain text, outperforming sequential
encoding models such as CopyRNN [21].

Our distinction is proposing an encoder for Web documents
which takes into account useful structures such as title, body, and
anchor. Figure 1 contrasts DivGraphPointer considering only term
proximity on a plain text (black edges), with ours considering field
structures of diverse importance, by adding inter-field relations
(red edges). Representing structure in encoding Web documents is
essential, as each field contributes uniquely to KPE: title includes
high-precision matches, body includes high-recall words, and an-
chor, linking from an external source document, connects to “ab-
sent” words that may not exist in the document. For example, in
Figure 1(b), title captures the high-precision word “baggage” and an-
chor adds an absent word “luggage” to representation, contributing
to answering future queries with vocabulary mismatches.

Our empirical results validate that our model effectively exploits
structure information in Web documents, outperforming both base-
lines with and without consideration of structures.

2 RELATEDWORK
This section overviews existing work on KPE and presents our
distinction. Initial KPE models focus on sequential encoding of a
document [33], which can be implemented by LSTM [14] or GRU [5].
Recently, neural graph-based models [11, 25, 28], that extend tra-
ditional graph-based keyword ranking [2, 8, 22], outperformed
sequential models, by using co-occurrence or proximity between

https://doi.org/10.1145/3404835.3463067
https://doi.org/10.1145/3404835.3463067

words as edge weights for modeling relations between them. Our
baseline DivGraphPointer [28] using Graph Convolutional Network
(GCN) [18] falls into this category, focusing on encoding plain text.

For representing structures in documents, modeling internal and
external structures of the text are essential sources of prediction sig-
nals. Internal structures considered for KPE include section title [4]
as a representation of topics, syntactic structures of documents
such as POS-tags [34], discourse relations [15], or dependency parse
tree [29], or visual features in Web documents such as font size
or location of text chunks [32]. External structures include cita-
tion network [3, 9, 26] of scientific papers, hyperlinks connecting
documents with anchor text [6, 20], or similar documents that can
expand keyword vocabulary and contexts [30, 31].

Our distinction:Wepropose a graph-based encoderwith structure-
awareness, representing both external and internal structures, to
significantly outperform KPE state-of-the-arts.

3 APPROACH
Given aWeb documentX, keyphrase prediction task aims to predict
gold keyphrase Y where Y should sufficiently contain the topical
information of X with only a few words. We leverage structure
information inWeb documents:X consists of multiple field contents
{X𝑢 }𝑢∈𝐹 where 𝐹 is a set of fields. In §3.1, we first present our
baseline, treating X as plain text that entirely belongs to a field 𝑢
(i.e., 𝐹 = {𝑢} and X = X𝑢), then, in §3.2, present our distinctions.

3.1 Baseline: Plain Text
Targeting plain texts that consist of a single field, i.e., X = X𝑢 ,
this section focuses on modeling intra-field relation, i.e., relation
between words within a field, describing Graph Convolutional
Network (GCN) [18] for KPE, used in DivGraphPointer [28].

A fully connected graph for X𝑢 is first constructed: Nodes are
words and edges reflect the relatedness between the words, using
position-based proximity between the words. Given the graph,
the GCN layer contextualizes word representations, considering
the relatedness between words. To iteratively propagate contexts,
starting from uncontextualized word representations obtained from
a word embedding matrix, we stack 𝐿 GCN layers. We denote
the word representations for each layer by H𝑢

𝑙
∈ R𝑁𝑢×𝐷 , where

𝑙 ∈ [1, 𝐿], 𝑁𝑢 , and 𝐷 denote the index of the contextualization layer,
the number of unique words in X𝑢 , and the number of features for
each node representation, respectively.

To model intra-field relation, two adjacency matrices,
←−
A𝑢 and

−→
A𝑢 ∈ R𝑁𝑢×𝑁𝑢 for forward and backward direction respectively,
are obtained using position-based proximity:

←−
A𝑢
𝑖 𝑗 =

∑
𝑝𝑢
𝑖
∈P(𝑥𝑢

𝑖
)

∑
𝑝𝑢
𝑗
∈P(𝑥𝑢

𝑗
)
max((𝑝𝑢𝑖 − 𝑝

𝑢
𝑗)
−1, 0) (1)

−→
A𝑢
𝑖 𝑗 =

∑
𝑝𝑢
𝑖
∈P(𝑥𝑢

𝑖
)

∑
𝑝𝑢
𝑗
∈P(𝑥𝑢

𝑗
)
max((𝑝𝑢𝑗 − 𝑝

𝑢
𝑖)
−1, 0), (2)

where 𝑝𝑢[𝑖/𝑗] ∈ P(𝑥
𝑢
[𝑖/𝑗]) is a position offset of a unique word 𝑥

𝑢
[𝑖/𝑗]

in X𝑢 . Note, a word that appears multiple times sums up its proxim-
ity through multiple occurrences, and is naturally emphasized. To
stabilize training, following the convention of [18], we normalize
A𝑢 ∈ {←−A𝑢 ,

−→
A𝑢 } to Â𝑢 with eigenvalues close to 1, from which

intra-field context vectors Cintra
𝑙,𝑢
∈ R𝑁𝑢×𝐷 can be obtained using

graph convolution [18, 28]:

Cintra
𝑙,𝑢

=
←−̂
A𝑢H𝑢

𝑙

←−
W𝑢

𝑙
+
−→̂
A𝑢H𝑢

𝑙

−→
W𝑢

𝑙
+ H𝑢

𝑙
W𝑢

𝑙
, (3)

where
←−
W𝑢

𝑙
,
−→
W𝑢

𝑙
,W𝑢

𝑙
∈ R𝐷×𝐷 are learnable matrices.

3.2 Proposed: Inter-field Relation
Our proposed approach decomposes X into multiple field contents,
{X𝑢 }𝑢∈𝐹 where 𝐹 is a set of fields. Our goal in leveraging structure
information is to model different language characteristics between
fields, and to model inter-field relation, enabling a complemen-
tary interaction between the contents of different fields. For ex-
ample, a short title with high precision often consists of a few
topic-indicative words while a long body with high recall addi-
tionally includes functional words (e.g., conjunctions or pronouns).
Thus, by modeling the interaction between the two fields, we can
achieve a well-balanced trade-off between precision and recall.

To tackle the heterogeneity of language characteristics, the base-
line that models intra-field relation can be extended with dedicated
matrices

←−
W𝑢

𝑙
,
−→
W𝑢

𝑙
,W𝑢

𝑙
for each field 𝑢 ∈ 𝐹 .

To model inter-field relation, for each field 𝑠 ∈ 𝐹/{𝑢}, we use
words that appear in both 𝑢 and 𝑠 in common, as mutual context, to
propagate context from 𝑠 to 𝑢. Specifically, we build an adjacency
matrix between the two fields M𝑠→𝑢 ∈ R𝑁𝑢×𝑁𝑠 where for each
word in field 𝑢 and 𝑠 , ∀𝑥𝑢

𝑖
∈ X𝑢 ,∀𝑥𝑠

𝑘
∈ X𝑠 , M𝑠→𝑢

𝑖𝑘
= 1 if 𝑥𝑢

𝑖
= 𝑥𝑠

𝑘
,

and 0 otherwise. Similar to normalizing A𝑢 (§3.1), we normalize
M𝑠→𝑢 to M̂𝑠→𝑢 =

M𝑠→𝑢
𝑖𝑘∑

∀𝑠′∈𝐹 /{𝑢},∀𝑘′∈[1,𝑁𝑠′] I(𝑥
𝑢
𝑖
=𝑥𝑠
′

𝑘′)
1, from which we

can obtain inter-field context vectors Cinter
𝑙,𝑢
∈ R𝑁𝑢×𝐷 by

Cinter
𝑙,𝑢

=
∑

∀𝑠∈𝐹/{𝑢 }
M̂𝑠→𝑢H𝑠

𝑙
W𝑠→𝑢

𝑙
, (4)

where W𝑠→𝑢
𝑙
∈ R𝐷×𝐷 is a learnable matrix for feature transforma-

tion from field 𝑠 to 𝑢.
After aggregating intra- and inter-field contexts by Eq (3, 4),

node representations are updated using residual addition between
the previous node representations and the aggregated contexts [7]:

H𝑢
𝑙+1 = H𝑢

𝑙
+
(
Cintra
𝑙,𝑢
+ Cinter

𝑙,𝑢

)
⊗ 𝜎

(
Gintra
𝑙,𝑢
+ Ginter

𝑙,𝑢

)
, (5)

where Gintra
𝑙,𝑢

and Ginter
𝑙,𝑢

are obtained in the same way to Eq (3, 4)
respectively but with different parameters, and ⊗, 𝜎 denote element-
wise product and sigmoid function respectively. Such residual con-
nection enables effective gradient back-propagation with deep lay-
ers [7, 13]. For baseline, H𝑢

𝑙
is updated without Cinter

𝑙,𝑢
and Ginter

𝑙,𝑢
.

Finally, contextualized word vectors in the last GCN layer for all
fields, {H𝑢

𝐿
}𝑢∈𝐹 , are fed into the decoder to extract keyphrases.

3.3 Shared: Vanilla Decoder
Given contextualized word vectors from encoder, {H𝑢

𝐿
}𝑢∈𝐹 , the goal

of decoder is to extract each keyword, 𝑦𝑡 , in the gold keyphrase
Y = [𝑦1, . . . , 𝑦𝑇] within the context of the given document. As our
focus in this paper is encoding, we do not optimize for the decoder,

1We normalizeM𝑠→𝑢 row-by-row, since each row has different numbers of non-zero
entries, unlike

←−
A𝑢 and

−→
A𝑢 which are dense matrices without any zero entries.

and share a simple decoder [28] in common: A single layer GRU [5]
decoder sequentially copies keywords from the given document.

s𝑡 = GRU(y𝑡−1, s𝑡−1) (6)
𝑝 (𝑦𝑡 |𝑦1, . . . , 𝑦𝑡−1,X) = 𝜙 (s𝑡 , {H𝑢

𝐿}𝑢∈𝐹), (7)

where s𝑡 ∈ R𝐷 is a hidden state of the decoder at 𝑡-th decoding
step, y𝑡−1 is a word vector for previously extracted keyword, and
𝜙 is a function computing copy weights, a distribution of copy
probability for words in X, in place of 𝑦𝑡 .

To leverage structure information in Web documents, such com-
putation should consider field-specific frequency, for which we
make the following changes to vanilla decoder. First, word appear-
ance in some field can be learned to be emphasized, e.g., words in
the anchor field are often more likely to be keywords than words in
the body field [6, 20]. Note that, for each field 𝑢, we use dedicated
parameters

←−
W𝑢

𝑙
,
−→
W𝑢

𝑙
,W𝑢

𝑙
for graph convolution (§3.2). Thus, we

can inject field-type information into Cintra
𝑙,𝑢

and accordingly into
H𝑢
𝐿
(using Eq (3) and Eq (5) respectively), by which field importance

can be considered. Specifically, to compute copy scores {𝑧𝑢,𝑖𝑡 }
𝑁𝑢

𝑖=1 for
words in a field 𝑢, we employ attention layer [1] with H𝑢

𝐿
∈ R𝑁𝑢×𝐷 :

𝑧
𝑢,𝑖
𝑡 = v⊤tanh(Q[s𝑡 ; h𝑢𝑖] + b), (8)

where h𝑢
𝑖
(the 𝑖-th row vector in H𝑢

𝐿
) is the word vector for word

𝑥𝑖 in the field 𝑢, infused with field type information, [;] denotes
the concatenation of the two input vectors, and v ∈ R𝐷 ,Q ∈
R𝐷×2𝐷 , b ∈ R𝐷 are learnable parameters.

Second, since overlapping terms that appear in different fields
in common are highly likely to be a keyword (e.g., in Figure 1(b),
“baggage” in body, title and header), the decoder should emphasize
those terms. Specifically, for each unique word in the given docu-
ment, denoted by 𝑥 𝑗 , we accumulate the copy scores of 𝑥 𝑗 across
fields, producing a probability 𝜙 𝑗 for the word 𝑥 𝑗 as follows:

𝜙 𝑗 (s𝑡 , {H𝑢
𝐿}𝑢∈𝐹) =

∑
∀𝑢∈𝐹 |𝑥𝑢

𝑖
=𝑥̃ 𝑗

exp(𝑧𝑢,𝑖𝑡)∑
∀𝑢′∈𝐹

∑𝑁𝑢′
𝑘=1 exp(𝑧

𝑢′,𝑘
𝑡)

. (9)

Finally, following the convention of [28], we use beam search
to find word sequences with maximum probability during infer-
ence, where beam size is empirically tuned to 200. In addition,
during training and inference, we add a special symbol at the end
of keyphrases, for predicting the end of sequence. Parameters are
optimized to maximize the likelihood of ground-truth keyphrases
using cross entropy loss as objective.

4 EXPERIMENT
4.1 Dataset
As illustrated in §1, we have two tasks, represented by the following
two datasets.

Query Prediction and Document Ranking: For the first task, we
sampled 1.3M real-world Web documents and corresponding click
queries using NAVER search engine. To denoise irrelevant clicks,
we removed queries that cannot be extracted from the fields in
the given document. We randomly sampled 15k documents for
evaluation. Documents without click queries were excluded, finally
producing 11k documents. We use 5k documents as a test set and

the others as a validation set. As most of the documents and click
queries are written in Korean, we denote this constructed dataset
as KoWeb, short for KoreanWeb documents.

For structures in Web documents, we use title, body, and anchor
text. Body is divided into body as a whole, body with large font
sizes, body placed in borders, and h1 headers.

Human-annotated Keyphrases: For the second task, we evaluate
models on human-annotated keyphrases using public benchmarks
in English, OpenKP [32]. 134K, 6K, and 6K documents are used for
train, validation, and test evaluation respectively.

Using visual features on text segments given in the dataset, we
structuralized documents into body text as a whole, large font body,
and h1 headers. Titles are not provided in this dataset.

Statistics for both KoWeb and OpenKP are presented in Table 1.

Statistics KoWeb OpenKP
of document 1.3M 148K
of unique CQ/Kph 2.9M 99.6K
Average # of CQ/Kph per document 2.03 1.8
Average document length 263.4 900.4
Average CQ/Kph length 3.13 2.0

Table 1: Statistics on KoWeb and OpenKP. CQ and Kph are
short for click query and keyphrase respectively.

4.2 Implementation Detail
For efficient training, we share word embedding matrices of en-
coders for all fields as well as for decoder. We used top-100k and
top-50k frequent words as vocabularies of both encoder and de-
coder, for KoWeb and OpenKP respectively. We train models by
stochastic gradient descent method using Adam optimizer [17] with
learning rate 1e-4, 𝑙2 constraint [23] of 1, and batch size 64.We apply
early stopping based on perplexity on validation set. We search the
best value for 𝐷 between {128, 256} and 𝐿 among {3, 4, 5} based on
validation performance. The best value for 𝐷 was 128 and the best
value for 𝐿 was 3 and 4 for KoWeb and OpenKP respectively. Our
implementation was based on Pytorch [24] and OpenNMT [19].

4.3 Baselines
To validate the potential of leveraging structure information inWeb
documents, we compare our model with models that do not use
structure information such as CopyRNN [21] and GraphPointer
(proposed in DivGraphPointer [28]). CopyRNN represents a docu-
ment as a word sequence, and encodes the sequence using GRU [5].
GraphPointer represents a document as a fully connected graph by
using proximity between words as edge weights, and then GCN [18]
is used to encode the graph (§3.1). For the two baselines, documents
are given as concatenation of title and body for KoWeb dataset2.
For OpenKP, we only use body, as the titles are not provided.

To validate the effectiveness of our design choice on structured
Web documents, we also use TGNet [4] as a baseline that uses a
simple structure consisting of title and body. Since titles are not
provided in OpenKP, we use h1 headers instead.

Recall from §3.3 that all implementations share our vanilla de-
coder for fairness. Therefore, we distinctively denote the models
2For fair comparisons with baselines, we filtered out click queries that cannot be
extracted by a combination of body and title fields, for both training and evaluation.

by their encoders: SeqEnc, GraphEnc, TGEnc, and MFGraphEnc
(short for Multi-Field Graph Encoder) correspond to encoders used
in CopyRNN, GraphPointer, TGNet, and our encoder respectively.

4.4 KoWEB
We first evaluate models supervised by click query using KoWeb.

4.4.1 Intrinsic: Query Prediction. For evaluation metrics, we use
macro-averaged precision, recall, and F1 scores, used as standard
performance metrics on keyphrase prediction task. Given the top-𝑘
predictions by models, we first count the number of correct predic-
tions (denoted by hit@𝑘), then precision and recall are computed
as hit@𝑘 divided by 𝑘 and hit@𝑘 divided by the number of target
click queries respectively. We report F1@1/3/5 in Table 2.

Model F1@1 F1@3 F1@5
SeqEnc 0.178 0.164 0.135
TGEnc 0.176 0.167 0.137
GraphEnc 0.185 0.157 0.128
MFGraphEnc (ours) 0.219 0.181 0.146

Table 2: KoWeb results: our proposedmodel outperforms all
baselines with statistical significance3.

SeqEnc shows comparable performances with TGEnc, indicating
that titles in Web documents are noisy and thus do not provide
effective guidance for encoding. Meanwhile, by using headers and
anchors to complement noisy title, ours outperforms all baselines.

4.4.2 Extrinsic: Ranking. We perform extrinsic evaluation using
document retrieval task [10]. For evaluation, we constructed a new
dataset as follows: First, we randomly sampled 1k search queries
from NAVER search log and removed 104 queries which have vague
search intents. Then, top-100 ranks from NAVER search for each
query were crawled as search candidates.

To reduce the significant time cost necessary to perform keyphrase
extractions repeatedly, we sampled documents again from the can-
didate pool by selecting (1) about 10 documents randomly from
low rank area of a search result (lower than top-10 ranks) as poten-
tially irrelevant (or low relevance) candidates and (2) top-3 ranked
documents in the search result as potentially-relevant ones. Given
the document candidates for each query, we asked three expert
annotators to assign relevance scores ranging from 1 to 5 between
the query and the documents. For disagreed judgements, a senior
assessor was requested to decide the labels. As a result, we collect
about 10k unique relevance judged documents for 896 queries. To
get realistic document frequency statistics for each term, we used
additional 1M documents which were also randomly sampled from
NAVER search engine. Note that any document used in ranking
experiments is not included in KoWeb, where extraction models
were trained, to evaluate generalization ability.

Given the dataset, we extracted keyphrases from each document
by using keyphrase extraction models trained on KoWeb. The ex-
tracted keyphrases were attached to the document as a separate
field to the existing fields in the documents. For document retrieval,
we used BM25f [27] as a ranking function, one of the standard
ranking approaches to consider field structure of Web documents.

3at 𝑝 < 0.05 using Student’s paired t-test.

Index nDCG@1 @3 @5
Document 0.587 0.650 0.695

+ SeqEnc 0.629 0.658 0.705
+ TGEnc 0.621 0.661 0.701
+ GraphEnc 0.631 0.665 0.708
+ MFGraphEnc (ours) 0.649 0.682 0.724

Table 3: nDCG@1/3/5 on retrieval task (KoWeb): before/after
document is expanded with extracted keyphrases4.
80% of search queries in the dataset was used to tune BM25f param-
eters and 20% for evaluation. BM25f parameters were re-optimized
again whenever a keyphrase extraction method was changed in
the experiments. We report nDCG@𝑘 [16], using the ranked list of
retrieved documents and relevance labels, in Table 3.

Overall, indexing documents with predicted click queries im-
proves retrieval performances, validating the effectiveness of click
queries as pseudo keyphrases on document retrieval. Among keyphrase
extractionmodels, our proposedmodel using field structures achieves
the largest performance increases.

4.5 OpenKP

Model F1@1 F1@3 F1@5
SeqEnc 0.212 0.235 0.209
TGEnc 0.226 0.257 0.225
GraphEnc 0.207 0.229 0.200
BLING-KPE 0.244 0.277 0.198
MFGraphEnc (ours) 0.273 0.284 0.244

Table 4: OpenKP results: ours proposed model outperforms
all baselines with statistical significance5.

In addition to KoWeb, we also validate the effectiveness of our
proposed model using a public/English dataset, OpenKP [32]. We
add a new baseline BLING-KPE [32] that uses visual features of
the document as privileged information in this set6. We report F1
scores of top-1/3/5 predictions as performance metrics, in Table 4.

In contrast to results on KoWeb dataset, TGEnc outperforms
SeqEnc on F1 measures. In this dataset, headers were used as ti-
tle for TGEnc, which contain 44.8% of ground-truth keyphrases
(higher than 38.5% of title in KoWeb), which explains relatively
higher performance. Meanwhile, our proposed model outperforms
all baselines on all metrics.

5 CONCLUSION
We propose to encode structured Web documents consisting of
heterogeneous fields, by leveraging both intra-/inter-field relations,
integrated as a graph model, for KPE. In our experiments, our
method outperforms state-of-the-arts in both real-life search logs
and public benchmarks for KPE.

ACKNOWLEDGMENTS
This work was supported by NAVER-SQR program from NAVER
corporation, and IITP funded by MSIT (No. 2017-0-01779, XAI).
4We tried varying 𝑘 for the top-𝑘 keyphrases and empirically found 𝑘 = 1 to strike
the best balance regarding precision-recall trade-off.
5at 𝑝 < 0.001 using Student’s paired t-test.
6For BLING-KPE, we present performances that were reported in the MSMARCO
leaderboard (https://microsoft.github.io/msmarco/). For fair comparisons, we report
performances of BLING-KPE without pre-training on Web-scale click queries.

https://microsoft.github.io/msmarco/

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine

Translation by Jointly Learning to Align and Translate. In ICLR. http://arxiv.org/
abs/1409.0473

[2] Adrien Bougouin, Florian Boudin, and Béatrice Daille. 2013. TopicRank: Graph-
Based Topic Ranking for Keyphrase Extraction. In Proceedings of the Sixth Inter-
national Joint Conference on Natural Language Processing. Asian Federation of
Natural Language Processing, Nagoya, Japan, 543–551. https://www.aclweb.org/
anthology/I13-1062

[3] Cornelia Caragea, Florin Bulgarov, Andreea Godea, and Sujatha Das Gollapalli.
2014. Citation-enhanced keyphrase extraction from research papers: A supervised
approach. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). 1435–1446.

[4] Wang Chen, Yifan Gao, Jiani Zhang, Irwin King, and Michael R Lyu. 2019. Title-
Guided Encoding for Keyphrase Generation. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 33. 6268–6275.

[5] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder–Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, Doha, Qatar,
1724–1734. https://doi.org/10.3115/v1/D14-1179

[6] Van Dang and Bruce W Croft. 2010. Query reformulation using anchor text. In
Proceedings of the third ACM international conference on Web search and data
mining. 41–50.

[7] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. 2017. Language
modeling with gated convolutional networks. In International conference on
machine learning. 933–941.

[8] Corina Florescu and Cornelia Caragea. 2017. A position-biased pagerank al-
gorithm for keyphrase extraction. In Thirty-first AAAI conference on artificial
intelligence.

[9] Sujatha Das Gollapalli and Cornelia Caragea. 2014. Extracting Keyphrases from
Research Papers Using Citation Networks.. In AAAI, Vol. 14. Citeseer, 1629–1635.

[10] Carl Gutwin, Gordon Paynter, Ian Witten, Craig Nevill-Manning, and Eibe Frank.
1999. Improving browsing in digital libraries with keyphrase indexes. Decision
Support Systems 27, 1-2 (1999), 81–104.

[11] Fred.X Han, Di Niu, Kunfeng Lai, Weidong Guo, Yancheng He, and Yu Xu. 2019.
Inferring Search Queries fromWeb Documents via a Graph-Augmented Sequence
to Attention Network. In The World Wide Web Conference (San Francisco, CA,
USA) (WWW ’19). Association for Computing Machinery, New York, NY, USA,
2792–2798. https://doi.org/10.1145/3308558.3313746

[12] Kazi Saidul Hasan and Vincent Ng. 2014. Automatic keyphrase extraction: A
survey of the state of the art. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). 1262–1273.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[14] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[15] Tatsuya Ishigaki, Hidetaka Kamigaito, Hiroya Takamura, and Manabu Okumura.
2019. Discourse-Aware Hierarchical Attention Network for Extractive Single-
Document Summarization. In Proceedings of the International Conference on Recent
Advances in Natural Language Processing (RANLP 2019). INCOMA Ltd., Varna,
Bulgaria, 497–506. https://doi.org/10.26615/978-954-452-056-4_059

[16] Kalervo Järvelin and Jaana Kekäläinen. 2017. IR Evaluation Methods for Re-
trieving Highly Relevant Documents. SIGIR Forum 51, 2 (Aug. 2017), 243–250.
https://doi.org/10.1145/3130348.3130374

[17] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980

[18] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYgl

[19] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M.
Rush. 2017. OpenNMT: Open-Source Toolkit for Neural Machine Translation. In
Proc. ACL. https://doi.org/10.18653/v1/P17-4012

[20] Reiner Kraft and Jason Zien. 2004. Mining anchor text for query refinement. In
Proceedings of the 13th international conference on World Wide Web. 666–674.

[21] Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing He, Peter Brusilovsky, and
Yu Chi. 2017. Deep Keyphrase Generation. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Vancouver, Canada, 582–592. https:
//doi.org/10.18653/v1/P17-1054

[22] Rada Mihalcea and Paul Tarau. 2004. Textrank: Bringing order into text. In Pro-
ceedings of the 2004 conference on empirical methods in natural language processing.

404–411.
[23] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the Difficulty

of Training Recurrent Neural Networks. In Proceedings of the 30th International
Conference on International Conference on Machine Learning - Volume 28 (Atlanta,
GA, USA) (ICML’13). JMLR.org, III–1310–III–1318.

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Cur-
ran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[25] Animesh Prasad and Min-Yen Kan. 2019. Glocal: Incorporating Global Informa-
tion in Local Convolution for Keyphrase Extraction. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
Association for Computational Linguistics, Minneapolis, Minnesota, 1837–1846.
https://doi.org/10.18653/v1/N19-1182

[26] Vahed Qazvinian, Dragomir Radev, and Arzucan Özgür. 2010. Citation summa-
rization through keyphrase extraction. In Proceedings of the 23rd international
conference on computational linguistics (COLING 2010). 895–903.

[27] Stephen Robertson, Hugo Zaragoza, and Michael Taylor. 2004. Simple BM25
Extension to Multiple Weighted Fields. In Proceedings of the Thirteenth ACM
International Conference on Information and KnowledgeManagement (Washington,
D.C., USA) (CIKM ’04). Association for Computing Machinery, New York, NY,
USA, 42–49. https://doi.org/10.1145/1031171.1031181

[28] Zhiqing Sun, Jian Tang, Pan Du, Zhi-Hong Deng, and Jian-Yun Nie. 2019. Di-
vgraphpointer: A graph pointer network for extracting diverse keyphrases. In
Proceedings of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval. 755–764.

[29] Paul Tarau and Eduardo Blanco. 2019. Dependency-based Text Graphs for
Keyphrase and Summary Extraction with Applications to Interactive Content
Retrieval. arXiv preprint arXiv:1909.09742 (2019).

[30] Xiaojun Wan and Jianguo Xiao. 2008. CollabRank: Towards a Collaborative
Approach to Single-Document Keyphrase Extraction. In Proceedings of the 22nd
International Conference on Computational Linguistics (Coling 2008). Coling 2008
Organizing Committee, Manchester, UK, 969–976. https://www.aclweb.org/
anthology/C08-1122

[31] Xiaojun Wan and Jianguo Xiao. 2008. Single Document Keyphrase Extraction
Using Neighborhood Knowledge.. In AAAI, Vol. 8. 855–860.

[32] Lee Xiong, Chuan Hu, Chenyan Xiong, Daniel Campos, and Arnold Overwijk.
2019. Open Domain Web Keyphrase Extraction Beyond Language Modeling. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Association for Computational Linguistics, Hong Kong, China,
5175–5184. https://doi.org/10.18653/v1/D19-1521

[33] Qi Zhang, Yang Wang, Yeyun Gong, and Xuanjing Huang. 2016. Keyphrase
Extraction Using Deep Recurrent Neural Networks on Twitter. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Austin, Texas, 836–845. https://doi.
org/10.18653/v1/D16-1080

[34] Jing Zhao and Yuxiang Zhang. 2019. Incorporating Linguistic Constraints into
Keyphrase Generation. In Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics. Association for Computational Linguistics,
Florence, Italy, 5224–5233. https://doi.org/10.18653/v1/P19-1515

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://www.aclweb.org/anthology/I13-1062
https://www.aclweb.org/anthology/I13-1062
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1145/3308558.3313746
https://doi.org/10.26615/978-954-452-056-4_059
https://doi.org/10.1145/3130348.3130374
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-1054
https://doi.org/10.18653/v1/P17-1054
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/N19-1182
https://doi.org/10.1145/1031171.1031181
https://www.aclweb.org/anthology/C08-1122
https://www.aclweb.org/anthology/C08-1122
https://doi.org/10.18653/v1/D19-1521
https://doi.org/10.18653/v1/D16-1080
https://doi.org/10.18653/v1/D16-1080
https://doi.org/10.18653/v1/P19-1515

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Baseline: Plain Text
	3.2 Proposed: Inter-field Relation
	3.3 Shared: Vanilla Decoder

	4 Experiment
	4.1 Dataset
	4.2 Implementation Detail
	4.3 Baselines
	4.4 KoWEB
	4.5 OpenKP

	5 Conclusion
	Acknowledgments
	References

